Deformations of the Monge/riemann Hierarchy and Approximately Integrable Systems
نویسنده
چکیده
Dispersive deformations of the Monge equation uu = uux are studied using ideas originating from topological quantum field theory and the deformation quantization programme. It is shown that, to a high-order, the symmetries of the Monge equation may also be appropriately deformed, and that, if they exist at all orders, they are uniquely determined by the original deformation. This leads to either a new class of integrable systems or to a rigorous notion of an approximate integrable system. Quasi-Miura transformations are also constructed for such deformed equations.
منابع مشابه
Quantum deformations of associative algebras and integrable systems
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curvature tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the ...
متن کاملIntegrable Rosochatius deformations of higher-order constrained flows and the soliton hierarchy with self-consistent sources
Abstract We propose a systematic method to generalize the integrable Rosochatius deformations for finite dimensional integrable Hamiltonian systems to integrable Rosochatius deformations for infinite dimensional integrable equations. Infinite number of the integrable Rosochatius deformed higher-order constrained flows of some soliton hierarchies, which includes the generalized integrable Hénon-...
متن کاملar X iv : n lin / 0 60 80 10 v 2 [ nl in . S I ] 1 8 A ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...
متن کاملA ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...
متن کامل00 1 ∂ - equations , integrable deformations of quasiconformal mappings and Whitham hierarchy ∗
∂-equations, integrable deformations of quasiconformal mappings and Whitham hierarchy * B. Konopelchenko Abstract It is shown that the dispersionless scalar integrable hierarchies and, in general, the universal Whitham hierarchy are nothing but classes of integrable deformations of quasiconformal mappings on the plane. Examples of deformations of quasiconformal mappings associated with explicit...
متن کامل